Cluster-Based Input Selection for Transparent Fuzzy Modeling1

نویسندگان

  • Can Yang
  • Jun Meng
  • Shanan Zhu
چکیده

Input selection is an important step in nonlinear regression modeling. By input selection, an interpretable model can be built with less computational cost. Input selection thus has drawn great attention in recent years. However, most available input selection methods are model-based. In this case, the input data selection is insensitive to changes. In this article, an effective model-free method is proposed for the input selection. This method is based on sensitivity analysis using Minimum Cluster Volume (MCV) algorithm. The advantage of our proposed method is that with no specific model needed to be built in advance for checking possible input combinations, the computational cost is reduced, and changes of data patterns can be captured automatically. The effectiveness of the proposed method is evaluated by using three well-known benchmark problems that show that the proposed method works effectively with small and medium-sized data collections. With an input selection procedure, a concise fuzzy model is constructed with high accuracy of prediction and better interpretation of data, which serves well the purpose of patterns discovery in data mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Input Selection for Transparent Fuzzy Modeling

Input selection is an important step in nonlinear regression modeling. By input selection, an interpretable model can be built with less computational cost. Input selection thus has drawn great attention in recent years. However, most available input selection methods are model-based. In this case, the input data selection is insensitive to changes. In this article, an effective model-free meth...

متن کامل

Target selection based on fuzzy clustering: a volume prototype approach to CoIL Challenge 2000

A fuzzy clustering based solution to the CoIL Challenge 2000 is described. The challenge consists of correctly determining which customers have caravans in a real world customer data base, and of describing the characteristics of their profile. The solution provided uses fuzzy clustering to granulate different features and determines a score for each cluster. A version of the fuzzy c-means algo...

متن کامل

Environmental Planning for Wind Power Plant Site Selection using a Fuzzy PROMETHEE-Based Outranking Method in Geographical Information System

Selection of suitable sites for wind power plants is one of the most important decision on wind resources development. Site selection for the establishment of large wind power plants requires spatial evaluation taking technical, economic, and environmental considerations into account. This study has applied a combination of PROMETHEE and Fuzzy AHP methods in a geographical information system en...

متن کامل

Feature Ranking Based on Interclass Separability for Fuzzy Control Application∗

This paper presents a modified feature ranking method on interclass separability based for fuzzy control application. Existing feature selection/ranking techniques are mostly suitable for classification problems. These techniques result in a ranking of the input feature or variables. Our modification exploits an arbitrary fuzzy clustering of the control output data. Using these output clusters ...

متن کامل

Cluster-Based Input Selection for Transparant Fuzzy Modeling

Input selection is an important step in nonlinear regression modeling. By input selection, an interpretable model can be built with less computational cost. Input selection thus has drawn great attention in recent years. However, most available input selection methods are model-based. In this case, the input data selection is insensitive to changes. In this article, an effective model-free meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016